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Derivation of low-temperature expansions for Ising model VII. 
The honeycomb-triangular code system 

M F Sykes. M G Watts and D S Gaunt 
Wheatstone Physics Laboratory, King’s College, Strand. London WC2R 2LS, UK 

Received 9 May 1975 

Abstract. The honeycomb-triangular code system is studied. It is shown how the principle 
of complete code balance can be exploited in a systematic way and the method is generalized 
to apply to partial codes. Euler’s law of the edges is used to establish a latent symmetry 
property of the code system. The new results make possible the derivation of extended 
series. 

1. Introduction 

In this paper we continue our study of the derivation of series expansions for the tri- 
angular and honeycomb lattices both as a field or p-grouping and as a temperature or 
u-grouping. We have introduced the problem and given the elementary general 
theory in previous papers (Sykes et al 1965, 1973a, b, c, to  be referred to as I ,  11, 111, IV 
respectively). 

Apart from the intrinsic interest of new data for the study of the simple Ising model 
the detailed configurational information obtained at the same time has application to 
many other problems that arise in the theory of cooperative phenomena. Notably multi- 
spin models (Sykes and Watts 1975 and references there cited), general spin models 
(Sykes and Gaunt 1973 and references there cited), order-disorder transitions in non- 
stoichiometric binary alloys and the staggered susceptibility of the Ising antiferromagnet 
(see Sykes et a1 1973d for a lead into the literature), the derivation of low- and high- 
density expansions for hard-sphere lattice gases (Gaunt and Fisher 1965, Gaunt 1967) 
and configurational studies of Potts models (Domb 1974, Ditzian 1974, Straley and 
Fisher 1973, Enting 1974a, b). 

In I11 the field grouping for the triangular lattice was obtained to order ten, taking 
account of all the perturbations of up to ten spins; even at this order the enumeration 
problem is quite difficult. We describe how the principle of complete code balance (11, 
$2)  can be exploited in a systematic way. A subset of codes (secondary codes) can be 
calculated recursively from the complementary set of (primary) codes. The method can 
be generalized to apply to the temperature grouping for which we describe a principle 
of partial code balance. 

The honeycomb-triangular code system is found to possess a property of latent 
symmetry which can be established by an application of Euler’s law of the edges to the 
underlying shadow graphs. By exploiting this latent symmetry, in conjunction with 
the principle of balance, five new ferromagnetic polynomials through I/I~, have been 
added to the temperature grouping for both the triangular and honeycomb lattices. 
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For the triangular lattice two new field polynomials L ,  , and L I Z  have been obtained 
and from these and the corresponding complete codes F1 I and FI2 four new field poly- 
nomials L,, through L,, for the honeycomb lattice. Companion papers (Sykes er a1 
1975a, b, to be referred to as VI11 and IX) describe the detailed application of the tech- 
niques and give the new results. 

2. Principle of complete code balance 

The principle of complete code balance is stated in detail in 11, 5 2 ;  it implies a set of 
constraints on each complete code F,, which must be consistent with all the lower-order 
complete codes F, through F,,- We now show that for the honeycomb-triangular code 
system these constraints can be used to determine all the codes (A, a, p, y) in F,, with 
p < a if all the codes with p 2 a are known. For convenience we call the codes charac- 
terized by p 2 a primary codes and those characterized by p < a secondary codes. We 
further show that the secondary codes can be calculated recursively from the primary 
codes in a systematic way. 

By definition (11, equation (2.9)) the value of y is the class of a code. Suppose that 
in F,, all codes with class greater than C have been determined. There are n - C codes 
of class C with p < a ;  explicitly: 

CO = ( 3 n  - 2C, 3n - 3C, 0,  C )  

C, = ( 3 n - 2 C - 1 , 3 n - 3 C - 2 ,  1 ,  C) 

Cj = ( 3 n - 2 C - j ,  3n-3C-2j ,  j ,  C) 

Cn-C-I = ( 2 n - C + l , n - C + 2 , n - C - l ,  C). 

Now the codes in F,, are interpreted on the honeycomb lattice by the substitution 
(11, equation (2 .6) ) :  

(2.2) 

(2.3) 
which we call the class C balance sequence must reproduce exactly those of the cor- 
responding sequence, with X and Y interchanged, generated by the codes F,, . . . Fn- ,. 
We have chosen the sequence (2.3) because, as can be verified by inspection, no code of 
class less than C can contribute to  any coefficient ; but we have supposed codes of class 
greater than C determined ; the principle of complete code balance, which predetermines 
the n - C coefficients of (2.3) therefore implies n - C constraints on the codes of class C. 
If all the primary codes ( p  2 a)of  class C are known these constraints are sufficient to 
determine the remaining n - C class C codes. Further the only codes of class C which 
contribute to the coefficient of Y n X C + j b 3 C + Z J  form an ascending sequence C j ,  Cj+ , , . . . 
in (2.1) and so the resulting equations can be solved recursively, starting with the co- 
efficient of C,,-c- l .  By repeating this process systematically in descending order of class 
all the in(n+ 1 )  (secondary) codes in Fn with fl  < a can be determined ifall the (primary) 
codes with p 3 cx are known. 

( A , c t , p , y )  = Y n ( l + b X ) ” ( l  +b2X)O(l + b 3 X ) ’ i ( l + X ) - i .  

and the coefficients of the sequence 
ynxCb3C, ynxC+ lb3Cf2 , .  . . , ynxC+jb3C+Zj,. . . , ynxn- Ib3C+2n-2C-2 
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A practical application of the above procedure has been made by Betts er al(1974) 
to  the hydrogen peroxide lattice. The code system there studied may be regarded as 
equivalent to the honeycombtriangular system so far as the present properties are 
concerned. For other code systems in which the class of a code is determined by more 
than one parameter of the code the balance sequences yield a set of independent implicit 
equations which cannot in general be solved recursively. 

3. Principle of partial balance 

In practical applications it often arises that the primary codes in F, are known only if 
they correspond to some power, m say, of U or less. If we denote the power of U on the 
triangular lattice by w then we have the relation (from 11, equation (3.5)) m 2 w = a + p. 
In other words the primary codes are known only if they lie in the partial code F: (as 
defined previously in IV, 5 2, this denotes the code corresponding to all graphs on the 
triangular lattice with w ,< m). 

It can be shown that if all the primary codes in F: are known the procedure described 
for complete codes can be used without modification and all the secondary codes in F: 
can still be found recursively using the balance sequences generated by the lower-order 
complete codes Fc . . . Fn- It  can be further shown that these sequences are correctly 
generated by the partial codes F;?, . , . , FY- *, Fr-  . These results, which we call collec- 
tively the principle of partial balance, are included by implication in the following 
theorem. 

Theorem 

Suppose (U + C, - 3n + 3C + 2w, 3n - 3C - w,  C) is any code in F, for which w > 2n - 2C 
and which is therefore a secondary code determined by the coefficient of Y"X"'bC+2"'  
with n' = 3n-2C-o in the class C balance sequence. Then any code (w'+C', 
-3nf+3C'+2w',  3n'-3C'-w',  C')  with n' < I I  contributes to the coefficient of 

if, and only if, ynXn'bCi 2 n '  

C' 2 C-2(n-n') (3.1) 

Q' < o-(C'-C)+2(n'-n) (3.2) 
with the trivial restriction 0' 2 3. 

We do not give a detailed proof of this theorem ; i t  may be established by an exhaus- 
tive examination of all the possible cases that can arise in picking out the required 
coefficient in the expansion of the right-hand side of (2.2). 

The burden of the principle of partial balance is that all the secondary codes in the 
temperature grouping are determined by all the primary codes in the temperature 
grouping ; further the secondary codes can always be calculated recursively, using the 
receipt given in $ 2 .  

4. Latent symmetry of the honeycombtriangular code system 

In this section we describe a special symmetry property of the honeycombtriangular 
code system which depends essentially on the symmetry between significant and insignifi- 
cant triangles (defined in 11,s 3). We first express the general code in terms of the graph 
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parameters of the corresponding shadow graph. Any code corresponds to one or more 
shadow graphs and each shadow graph is a configuration of perturbed spins which can 
be described by a linear graph. We summarize our notation for the parameters which 
is consistent with I-IV : 

s = number of spins (vertices of the graph) 
r = number of first neighbour bonds (edges of the graph) 
c = number of connected components 
f = number of finite faces 
t = number of elementary triangular faces 
( = number of elementary triangular faces of significant parity 
q = number of elementary triangular faces of insignificant parity 
h = number of holes defined asf- t 
o = corresponding power of U on triangular lattice. 

Clearly 

f = h f t  = h + ( + q  (4.1) 

and we recall that (11, equation (3.4)) 

o = a+B = 3s-r. (4.2) 

Since all the configurations are planar graphs we have the result, usually called Euler’s 
law of the edges, which in our notation may be written 

f = r - s f c .  (4.3) 

It follows by eliminatingf using (4.1) and (4.2) that 

t = ( + q  = 2s-w+c-h. (4.4) 

All configurations that contribute to the coefficient of U”’$ on the triangular lattice can 
be divided into subsets characterized by their value o f t ,  which value is determined by 
the quantity 

K = c-h (4.5) 

which we call the discriminant of the graph. (The same discriminant arises in the theory 
of the Ising model with pure triplet interactions (Sykes and Watts 1975)) 

If o and s are fixed any code of class C is uniquely determined ; further the class C 
is just the number of triangles of significant parity ( 5 )  in the corresponding configuration. 
Because of the symmetry between triangles of significant and insignificant parity on the 
lattice, every configuration with a distribution of t  into 4 and q will imply the existence of 
another with the roles of g and reversed ; this will ensure a symmetric pattern in the 
coefficients of the codes for any fixed s, o and IC with centre at 

5 = 32S-wfK). (4.6) 

We expect one or two central codes depending on whether t is even or odd. We write 

t even 

t odd 
t = 2 s - w f c - h  = (4.7) 
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and it is convenient to consider separately the odd regime, corresponding to w odd, and 
the even regime, corresponding to w even. 

Odd regime 

The corresponding codes are explicitly : 

(2s - I + ti + 2, s - 1 + 2ti + 6,  s - I -  t i -6 ,  I +  2 )  

(2s- I + t i +  1, s - I +  2ti+ 3, S -  I -  ti-3,1+ 1) 

* (2s-I+k.,s-I++ti, s-I- t i ,  l )  

(2s - I +  K - 1, S - l+  2K-3, S - I - ti + 3, I - 1) 

( Z s - I + t i - 2 , s - l + 2 ~ - 6 , ~ - I - ~ + 6 , 1 - 2 )  

Even regime 

(2s-m+ti+2, s-m+2ti+5, s-m+ti-4, m+ 1) 

( 2 s - m + ~ +  1, s-m+2ti+2, s-m-t i -  1, m) 

( 2 s - m + t i , ~ - m + 2 t i - l , ~ - m - t i + 2 ,  m-1)  

( 2 s - m t t i - l 1 , s - m + 2 ~ - 4 , s - m - t i + 5 ,  m-2) 

* 

(4.8) 

where the asterisk marks the centre of symmetry in the coefficients. 
In general the symmetry of each subset of codes characterized by the values o f t  and 

ti will be latent, since it will be hidden by the overlapping of symmetric code patterns 
resulting from a range of values of the discriminant K. If all the configurations are 
connected graphs without holes the code patterns (4.8) will exhibit a patent symmetry 
corresponding to  K = 1. In this latter case, for both the even and odd regimes, the codes 
on or above the centre of symmetry satisfy the condition p < tl (and are therefore 
secondary codes); it follows from the results of §§ 2 and 3 that they are determined by 
the principle of partial balance. The inequalities (3.1) and (3.2) ensure that for any fixed 
w the primary codes are not used in the recursion. But all these may be completed by 
the symmetry of the system (4.8) and therefore any such coefficient in F,, is completely 
determined by the precious codes. This conclusion finds an application of great practical 
use in the derivation of expansions as a temperature or u-grouping. 

5. Explicit illustration of latent symmetry and the application of the principle of partial 
balance 

We give in table 1 an analysis of the codes corresponding to the first five powers of u 
on the triangular lattice in F , ,  . The first three powers illustrate the patent symmetry 
corresponding to graphs of ti = 1 only; the first entry belonging to the even regime, 
the second to the odd and so on alternately. All the codes in the second column 
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Table 1. Analysis of leading coefficients in F, 2 .  

Power U on Corresponding K = l  K = O  K = 2  
triangular codes (total) one component one component two components 

lattice no holes one hole no holes 

12 9, 3. 7) 
1(18, 6, 6. 6) 

13 15(20, I I, 2, 7) 
87(19, 8, 5, 6) 
15(18, 5, 8, 5 )  

14 6(21,13, I. 7) 
345(20, IO, 4, 6) 
345(19, 7, 7. 5) 
q18, 4, IO, 4) 

15 74(21, 12, 3, 6) 
2079(20, 9, 6, 5) 
386(19, 6, 9, 4) 

16 -732(22, 13, 2, 6) 
-201(21, 1 1 ,  5, 5) 
4413(20, 8, 8, 4) 
87(19, 5, I I ,  3) 

1 
I 

15 
87 
15 

6 
345 
345 

6 

386 
239 1 
386 

-312 
-312 

78 -810 
5160 9 - 5370 
5160 63 -810 
78 9 

corresponding to u12, u13 and u14 are determined by the results of the previous section. 
The secondary code (19, 9, 3, 7) is found by an application of the principle of partial 
balance and the primary code (18, 6, 6, 6) follows by symmetry. Once this latter code 
is known the principle of partial balance enables the secondary codes (20, 11, 2, 7) and 
(19,8, 5 , 6 )  to be found and the primary code (18, 5, 8, 5) follows by symmetry. The four 
codes in u14 can be filled in by repeating the process. 

The powers of u15 and u16 illustrate the latent symmetry property. The symmetry 
of the codes corresponding to K = 1 is no longer visible in the total because of the 
contribution from codes corresponding to K = 2 (in u15) and later K = 2 and K = 0 
(in d6) .  At this stage the coefficient is not determined by the previous codes but it is 
sufficient to provide all but one column of the analysis. Any column with K 2 1 can 
then be completed by balance and symmetry. It is convenient at this stage to provide 
the columns K = 2 and K = 0 ;  the full coefficients can then be completed. The process 
can then be repeated for the leading terms in F1,, F 1 4 . .  . until the powers of U through 
u16 terminate. In this way the ferromagnetic polynomials $12  through $16 are readily 
completed ; since the coefficients are obtained by way of the codes the corresponding 
polynomials for the honeycomb lattice, both ferromagnetic and antiferromagnetic, are 
completed at the same time. To obtain further polynomials the provision of partial 
data corresponding to restricted values of K needs investigation and wz consider this in 
a companion paper (VIII). 
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